Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.946
Filtrar
1.
Science ; 381(6653): 54-59, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410832

RESUMO

Asymmetric cell divisions specify differential cell fates across kingdoms. In metazoans, preferential inheritance of fate determinants into one daughter cell frequently depends on polarity-cytoskeleton interactions. Despite the prevalence of asymmetric divisions throughout plant development, evidence for analogous mechanisms that segregate fate determinants remains elusive. Here, we describe a mechanism in the Arabidopsis leaf epidermis that ensures unequal inheritance of a fate-enforcing polarity domain. By defining a cortical region depleted of stable microtubules, the polarity domain limits possible division orientations. Accordingly, uncoupling the polarity domain from microtubule organization during mitosis leads to aberrant division planes and accompanying cell identity defects. Our data highlight how a common biological module, coupling polarity to fate segregation through the cytoskeleton, can be reconfigured to accommodate unique features of plant development.


Assuntos
Arabidopsis , Divisão Celular Assimétrica , Epiderme Vegetal , Folhas de Planta , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Linhagem da Célula , Polaridade Celular/genética , Citoesqueleto , Mitose/genética , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Epiderme Vegetal/citologia , Epiderme Vegetal/genética
2.
Plant J ; 115(5): 1428-1442, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37248638

RESUMO

Auxin plays an essential role in plant growth and development, particularly in fruit development. The YUCCA (YUC) genes encode flavin monooxygenases that catalyze a rate-limiting step in auxin biosynthesis. Mutations that disrupt YUC gene function provide useful tools for dissecting general and specific functions of auxin during plant development. In woodland strawberry (Fragaria vesca), two ethyl methanesulfonate mutants, Y422 and Y1011, have been identified that exhibit severe defects in leaves and flowers. In particular, the width of the leaf blade is greatly reduced, and each leaflet in the mutants has fewer and deeper serrations. In addition, the number and shape of the floral organs are altered, resulting in smaller fruits. Mapping by sequencing revealed that both mutations reside in the FveYUC4 gene, and were therefore renamed as yuc4-1 and yuc4-2. Consistent with a role for FveYUC4 in auxin synthesis, free auxin and its metabolites are significantly reduced in the yuc4 leaves and flowers. This role of FveYUC4 in leaf and flower development is supported by its high and specific expression in young leaves and flower buds using GUS reporters. Furthermore, germline transformation of pYUC4::YUC4, which resulted in elevated expression of FveYUC4 in yuc4 mutants, not only rescued the leaf and flower defects but also produced parthenocarpic fruits. Taken together, our data demonstrate that FveYUC4 is essential for leaf and flower morphogenesis in woodland strawberry by providing auxin hormone at the proper time and in the right tissues.


Assuntos
Flores , Fragaria , Folhas de Planta , Proteínas de Plantas , Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Clonagem Molecular , Perfilação da Expressão Gênica , Frutas
3.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077287

RESUMO

N6-methyladenosine (m6A) is one of the most abundant internal modifications of mRNA, which plays important roles in gene expression regulation, and plant growth and development. Vir-like m6A methyltransferase associated (VIRMA) serves as a scaffold for bridging the catalytic core components of the m6A methyltransferase complex. The role of VIRMA in regulating leaf development and its related mechanisms have not been reported. Here, we identified and characterized two upland cotton (Gossypium hirsutum) VIRMA genes, named as GhVIR-A and GhVIR-D, which share 98.5% identity with each other. GhVIR-A and GhVIR-D were ubiquitously expressed in different tissues and relatively higher expressed in leaves and main stem apexes (MSA). Knocking down the expression of GhVIR genes by the virus-induced gene silencing (VIGS) system influences leaf cell size, cell shape, and total cell numbers, thereby determining cotton leaf morphogenesis. The dot-blot assay and colorimetric experiment showed the ratio of m6A to A in mRNA is lower in leaves of GhVIR-VIGS plants compared with control plants. Messenger RNA (mRNA) high-throughput sequencing (RNA-seq) and a qRT-PCR experiment showed that GhVIRs regulate leaf development through influencing expression of some transcription factor genes, tubulin genes, and chloroplast genes including photosystem, carbon fixation, and ribosome assembly. Chloroplast structure, chlorophyll content, and photosynthetic efficiency were changed and unsuitable for leaf growth and development in GhVIR-VIGS plants compared with control plants. Taken together, our results demonstrate GhVIRs function in cotton leaf development by chloroplast dependent and independent pathways.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Adenosina/análogos & derivados , Cloroplastos/metabolismo , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Metilação , Metiltransferases/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(32): e2118866119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914140

RESUMO

Exotic plant invaders pose a serious threat to native plants. However, despite showing inferior competitive ability and decreased performance, native species often subsist in invaded communities. The decline of native populations is hypothesized to be halted and eventually reversed if adaptive evolutionary changes can keep up with the environmental stress induced by invaders, that is, when population extinction is prevented by evolutionary rescue (ER). Nevertheless, evidence for the role of ER in postinvasion persistence of native flora remains scarce. Here, I explored the population density of a native forb, Veronica chamaedrys, and evaluated the changes in the shade-responsive traits of its populations distributed along the invasion chronosequence of an exotic transformer, Heracleum mantegazzianum, which was replicated in five areas. I found a U-shaped population trajectory that paralleled the evolution of plasticity to shade. Whereas V. chamaedrys genotypes from intact, more open sites exhibited a shade-tolerance strategy (pronounced leaf area/mass ratio), reduced light availability at the invaded sites selected for a shade-avoidance strategy (greater internode elongation). Field experiments subsequently confirmed that the shifts in shade-response strategies were adaptive and secured postinvasion population persistence, as indicated by further modeling. Alternative ecological mechanisms (habitat improvement or arrival of immigrants) were less likely explanations than ER for the observed population rebound, although the contribution of maternal effects cannot be dismissed. These results suggest that V. chamaedrys survived because of adaptive evolutionary changes operating on the same timescale as the invasion-induced stress, but the generality of ER for postinvasion persistence of native plants remains unknown.


Assuntos
Evolução Biológica , Extinção Biológica , Espécies Introduzidas , Plantas , Veronica , Ecossistema , Heracleum/crescimento & desenvolvimento , Heracleum/efeitos da radiação , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Plantas/efeitos da radiação , Luz Solar , Veronica/crescimento & desenvolvimento , Veronica/efeitos da radiação
5.
Nature ; 608(7923): 552-557, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948636

RESUMO

As the climate changes, warmer spring temperatures are causing earlier leaf-out1-3 and commencement of CO2 uptake1,3 in temperate deciduous forests, resulting in a tendency towards increased growing season length3 and annual CO2 uptake1,3-7. However, less is known about how spring temperatures affect tree stem growth8,9, which sequesters carbon in wood that has a long residence time in the ecosystem10,11. Here we show that warmer spring temperatures shifted stem diameter growth of deciduous trees earlier but had no consistent effect on peak growing season length, maximum growth rates, or annual growth, using dendrometer band measurements from 440 trees across two forests. The latter finding was confirmed on the centennial scale by 207 tree-ring chronologies from 108 forests across eastern North America, where annual ring width was far more sensitive to temperatures during the peak growing season than in the spring. These findings imply that any extra CO2 uptake in years with warmer spring temperatures4,5 does not significantly contribute to increased sequestration in long-lived woody stem biomass. Rather, contradicting projections from global carbon cycle models1,12, our empirical results imply that warming spring temperatures are unlikely to increase woody productivity enough to strengthen the long-term CO2 sink of temperate deciduous forests.


Assuntos
Aquecimento Global , Estações do Ano , Temperatura , Árvores , Aclimatação , Biomassa , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Modelos Climáticos , Florestas , Aquecimento Global/estatística & dados numéricos , América do Norte , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Fatores de Tempo , Árvores/anatomia & histologia , Árvores/classificação , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Madeira/crescimento & desenvolvimento , Madeira/metabolismo
6.
Plant J ; 112(2): 451-459, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36042697

RESUMO

The search for genetic regulators of leaf venation patterning started over 30 years ago, primarily focused on mutant screens in the eudicotyledon Arabidopsis thaliana. Developmental perturbations in either cotyledons or true leaves led to the identification of transcription factors required to elaborate the characteristic reticulated vein network. An ortholog of one of these, the C2H2 zinc finger protein DEFECTIVELY ORGANIZED TRIBUTARIES 5 (AtDOT5), was recently identified through transcriptomics as a candidate regulator of parallel venation in maize (Zea mays) leaves. To elucidate how AtDOT5 regulates vein patterning, we generated three independent loss-of-function mutations by gene editing in Arabidopsis. Surprisingly, none of them exhibited any obvious phenotypic perturbations. To reconcile our findings with earlier reports, we re-evaluated the original Atdot5-1 and Atdot5-2 alleles. By genome sequencing, we show that reported mutations at the Atdot5-1 locus are actually polymorphisms between Landsberg erecta and Columbia ecotypes, and that other mutations present in the background most likely cause the pleiotropic mutant phenotype observed. We further show that a T-DNA insertion in the Atdot5-2 locus has no impact on leaf venation patterns when segregated from other T-DNA insertions present in the original line. We thus conclude that AtDOT5 plays no role in leaf venation patterning in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Folhas de Planta , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cotilédone/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo
7.
Sensors (Basel) ; 22(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35898004

RESUMO

Growth indices can quantify crop productivity and establish optimal environmental, nutritional, and irrigation control strategies. A convolutional neural network (CNN)-based model is presented for estimating various growth indices (i.e., fresh weight, dry weight, height, leaf area, and diameter) of four varieties of greenhouse lettuce using red, green, blue, and depth (RGB-D) data obtained using a stereo camera. Data from an online autonomous greenhouse challenge (Wageningen University, June 2021) were employed in this study. The data were collected using an Intel RealSense D415 camera. The developed model has a two-stage CNN architecture based on ResNet50V2 layers. The developed model provided coefficients of determination from 0.88 to 0.95, with normalized root mean square errors of 6.09%, 6.30%, 7.65%, 7.92%, and 5.62% for fresh weight, dry weight, height, diameter, and leaf area, respectively, on unknown lettuce images. Using red, green, blue (RGB) and depth data employed in the CNN improved the determination accuracy for all five lettuce growth indices due to the ability of the stereo camera to extract height information on lettuce. The average time for processing each lettuce image using the developed CNN model run on a Jetson SUB mini-PC with a Jetson Xavier NX was 0.83 s, indicating the potential for the model in fast real-time sensing of lettuce growth indices.


Assuntos
/crescimento & desenvolvimento , Redes Neurais de Computação , Humanos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento
8.
Proc Natl Acad Sci U S A ; 119(31): e2121288119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878042

RESUMO

The hormone gibberellin (GA) controls plant growth and regulates growth responses to environmental stress. In monocotyledonous leaves, GA controls growth by regulating division-zone size. We used a systems approach to investigate the establishment of the GA distribution in the maize leaf growth zone to understand how drought and cold alter leaf growth. By developing and parameterizing a multiscale computational model that includes cell movement, growth-induced dilution, and metabolic activities, we revealed that the GA distribution is predominantly determined by variations in GA metabolism. Considering wild-type and UBI::GA20-OX-1 leaves, the model predicted the peak in GA concentration, which has been shown to determine division-zone size. Drought and cold modified enzyme transcript levels, although the model revealed that this did not explain the observed GA distributions. Instead, the model predicted that GA distributions are also mediated by posttranscriptional modifications increasing the activity of GA 20-oxidase in drought and of GA 2-oxidase in cold, which we confirmed by enzyme activity measurements. This work provides a mechanistic understanding of the role of GA metabolism in plant growth regulation.


Assuntos
Temperatura Baixa , Secas , Regulação da Expressão Gênica de Plantas , Giberelinas , Modelos Biológicos , Folhas de Planta , Regulação Enzimológica da Expressão Gênica , Giberelinas/metabolismo , Oxigenases de Função Mista/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/crescimento & desenvolvimento , Zea mays/enzimologia , Zea mays/crescimento & desenvolvimento
9.
Plant Physiol Biochem ; 185: 290-301, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35728421

RESUMO

The growth, development, and morphology of plants are extremely affected by many internal and external factors. In this regard, plant nourishing solutions take the most impact. Nowadays, the magnetization of nutrient solutions has been recommended as a promising eco-friendly approach for improving the growth and development of plants. This study was designed to explore the potential of magnetic nutrient solutions in altering morphometric characteristics as well as some physiological and nutritional attributes of Rasha grapevines. Magnetic treatments included magnetized nutrient solution (MagS) and pre-magnetized water completed with nutrients (MagW + S) at magnetic field intensities (0.1 and 0.2 T). According to the results, the most considerable changes in leaf shape and size as well as fresh and dry weights were observed in the plants treated with MagS at 0.2 T. Also, MagS 0.2 had a significant effect on increasing photosynthetic pigments, content of total soluble carbohydrates and protein, and activity of antioxidant enzymes. The content of TNK, K, P, Fe, and Cu was considerably amplified by MagW + S 0.2. Overall, the magnetic solutions had favorable influences on physiological, nutritional state, and leaf morphology of grapevines possibly through alerting water and solution properties, mineral solubility, and phytohormones signalling.


Assuntos
Vitis/crescimento & desenvolvimento , Vitis/metabolismo , Cobre/metabolismo , Ferro/metabolismo , Fenômenos Magnéticos , Nutrientes , Fósforo/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Potássio/metabolismo , Vitis/anatomia & histologia , Água/metabolismo
10.
Plant Physiol Biochem ; 182: 202-215, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35525201

RESUMO

Baby-leaf vegetables are a trade name for leafy vegetables sold as leaves with petioles at the seedling stage. Amaranth (Amaranthus tricolor L.) is a nutritious baby-leaf vegetable containing many bioactive compounds. The effects of short-term ultraviolet B (UV-B) treatments on the growth and quality of baby leaf amaranth were studied, including the conditions of a 24-h recovery period after irradiation, and different irradiation intensities (3.0-9.0 W m-2), irradiation periods (4-16 h), and cumulative energies (130-170 kJ m-2). A recovery period experiment was conducted to observe the changes in the growth and quality of leaves at 0 and 24 h after UV-B irradiation. The results showed that the concentrations of phenolic compounds, flavonoids, anthocyanin, and ascorbic acid in the leaves, as well as the leaf antioxidant capacity increased 24 h after UV-B irradiation. Increases in target compound concentrations and antioxidant capacity without negative growth and appearance effects were observed in leaves irradiated with UV-B at 3, 6, and 9 W m-2 for irradiation periods of 12 and 16, 8 and 12, and 4 h, respectively. The highest bioactive compound concentration was found in leaves irradiated with UV-B at 6 W m-2 for 7 h (cumulative energy: 150 kJ m-2). It was concluded that UV-B irradiation at 6 W m-2 with a cumulative energy of 150 kJ m-2 and a 24 h post-irradiation recovery period could be an appropriate treatment to increase bioactive compounds in baby leaf amaranth without causing appearance abnormalities.


Assuntos
Amaranthus/química , Amaranthus/efeitos da radiação , Amaranthus/crescimento & desenvolvimento , Antocianinas/análise , Antioxidantes/análise , Ácido Ascórbico/análise , Flavonoides/análise , Fenóis/análise , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Raios Ultravioleta
11.
Ann Bot ; 130(3): 419-430, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35405006

RESUMO

BACKGROUND AND AIMS: Plant performance is enhanced by balancing above- and below-ground resource uptake through the intraspecific adjustment of leaf and root traits. It is assumed that these organ adjustments are at least partly coordinated, so that analogous leaf and root traits broadly covary. Understanding the extent of such intraspecific leaf-root trait covariation would strongly contribute to our understanding of how plants match above- and below-ground resource use strategies as their environment changes, but comprehensive studies are lacking. METHODS: We measured analogous leaf and root traits from 11 species, as well as climate, soil and vegetation properties along a 1000-m elevation gradient in the French Alps. We determined how traits varied along the gradient, to what extent this variation was determined by the way different traits respond to environmental cues acting at different spatial scales (i.e. within and between elevations), and whether trait pairs covaried within species. KEY RESULTS: Leaf and root trait patterns strongly diverged: across the 11 species along the gradient, intraspecific leaf trait patterns were largely consistent, whereas root trait patterns were highly idiosyncratic. We also observed that, when compared with leaves, intraspecific variation was greater in root traits, due to the strong effects of the local environment (i.e. at the same elevation), while landscape-level effects (i.e. at different elevations) were minor. Overall, intraspecific trait correlations between analogous leaf and root traits were nearly absent. CONCLUSIONS: Our study suggests that environmental gradients at the landscape level, as well as local heterogeneity in soil properties, are the drivers of a strong decoupling between analogous leaf and root traits within species. This decoupling of plant resource acquisition strategies highlights how plants can exhibit diverse whole-plant acclimation strategies to modify above- and below-ground resource uptake, improving their resilience to environmental change.


Assuntos
Meio Ambiente , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Plantas , Clima , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Plantas/anatomia & histologia , Plantas/classificação , Solo
12.
Mar Drugs ; 20(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35323487

RESUMO

Catharanthus roseus (L.) G. Don is a plant belonging to the genus Catharanthus of the Apocynaceae family. It contains more than one hundred alkaloids, of which some exhibit significant pharmacological activities. Chitooligosaccharides are the only basic aminooligosaccharides with positively charged cations in nature, which can regulate plant growth and antioxidant properties. In this study, the leaves of Catharanthus roseus were sprayed with chitooligosaccharides of different molecular weights (1 kDa, 2 kDa, 3 kDa) and different concentrations (0.01 µg/mL, 0.1 µg/mL, 1 µg/mL and 10 µg/mL). The fresh weights of its root, stem and leaf were all improved after chitooligosaccharides treatments. More importantly, the chitooligosaccharides elicitor strongly stimulated the accumulation of vindoline and catharanthine in the leaves, especially with the treatment of 0.1 µg/mL 3 kDa chitooligosaccharides, the contents of them were increased by 60.68% and 141.54%, respectively. Furthermore, as the defensive responses, antioxidant enzymes activities (catalase, glutathione reductase, ascorbate peroxidase, peroxidase and superoxide dismutase) were enhanced under chitooligosaccharides treatments. To further elucidate the underlying mechanism, qRT-PCR was used to investigate the genes expression levels of secologanin synthase (SLS), strictosidine synthase (STR), strictosidine glucosidase (SGD), tabersonine 16-hydroxylase (T16H), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT), peroxidase 1 (PRX1) and octadecanoid-responsive Catharanthus AP2-domain protein 3 (ORCA3). All the genes were significantly up-regulated after chitooligosaccharides treatments, and the transcription abundance of ORCA3, SLS, STR, DAT and PRX1 reached a maximal level with 0.1 µg/mL 3 kDa chitooligosaccharides treatment. All these results suggest that spraying Catharanthus roseus leaves with chitooligosaccharides, especially 0.1 µg/mL of 3 kDa chitooligosaccharides, may effectively improve the pharmaceutical value of Catharanthus roseus.


Assuntos
Catharanthus/efeitos dos fármacos , Quitosana/farmacologia , Oligossacarídeos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Antioxidantes/metabolismo , Catharanthus/genética , Catharanthus/crescimento & desenvolvimento , Catharanthus/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxirredutases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Vimblastina/análogos & derivados , Vimblastina/metabolismo , Alcaloides de Vinca/metabolismo
14.
Sci Rep ; 12(1): 2851, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181728

RESUMO

Plants do not have neurons but operate transmembrane ion channels and can get electrical excited by physical and chemical clues. Among them the Venus flytrap is characterized by its peculiar hapto-electric signaling. When insects collide with trigger hairs emerging the trap inner surface, the mechanical stimulus within the mechanosensory organ is translated into a calcium signal and an action potential (AP). Here we asked how the Ca2+ wave and AP is initiated in the trigger hair and how it is feed into systemic trap calcium-electrical networks. When Dionaea muscipula trigger hairs matures and develop hapto-electric excitability the mechanosensitive anion channel DmMSL10/FLYC1 and voltage dependent SKOR type Shaker K+ channel are expressed in the sheering stress sensitive podium. The podium of the trigger hair is interface to the flytrap's prey capture and processing networks. In the excitable state touch stimulation of the trigger hair evokes a rise in the podium Ca2+ first and before the calcium signal together with an action potential travel all over the trap surface. In search for podium ion channels and pumps mediating touch induced Ca2+ transients, we, in mature trigger hairs firing fast Ca2+ signals and APs, found OSCA1.7 and GLR3.6 type Ca2+ channels and ACA2/10 Ca2+ pumps specifically expressed in the podium. Like trigger hair stimulation, glutamate application to the trap directly evoked a propagating Ca2+ and electrical event. Given that anesthetics affect K+ channels and glutamate receptors in the animal system we exposed flytraps to an ether atmosphere. As result propagation of touch and glutamate induced Ca2+ and AP long-distance signaling got suppressed, while the trap completely recovered excitability when ether was replaced by fresh air. In line with ether targeting a calcium channel addressing a Ca2+ activated anion channel the AP amplitude declined before the electrical signal ceased completely. Ether in the mechanosensory organ did neither prevent the touch induction of a calcium signal nor this post stimulus decay. This finding indicates that ether prevents the touch activated, glr3.6 expressing base of the trigger hair to excite the capture organ.


Assuntos
Cálcio/química , Droseraceae/fisiologia , Eletricidade , Cabelo/fisiologia , Potenciais de Ação/genética , Anestésicos/farmacologia , Cálcio/metabolismo , Canais de Cálcio/genética , Droseraceae/efeitos dos fármacos , Éter/farmacologia , Oxilipinas/química , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Transdução de Sinais/genética , Tato/fisiologia , Percepção do Tato/genética , Percepção do Tato/fisiologia
15.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163082

RESUMO

Gynura bicolor (Roxb. ex Willd.) DC. (G. bicolor) is a functional vegetable rich in iron (Fe) and widely grown in Asia (e.g., Japan and China). Because most Fe in the soil exists in the form of insoluble oxides or hydroxides, it is difficult for plants to obtain Fe from the soil. A comparative metabolomic and transcriptome study was carried out to investigate the effect of Fe deficiency on metabolite synthesis and gene expression in young and mature leaves of G. bicolor. Fe deficiency caused chlorosis and decreased the chlorophyll content in young leaves. The metabolomic results for young leaves showed that l-glutamate and 4-hydroxybutanoic acid lactone significantly increased and decreased, respectively. The transcriptome results showed that the expression levels of genes involved in ferric reduction oxidase 7 and 14-kDa proline-rich protein DC2.15-like were significantly upregulated and downregulated, respectively. However, Fe deficiency had little effect on mature leaves.


Assuntos
Asteraceae/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Ferro/metabolismo , Metaboloma , Compostos Fitoquímicos/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma , Asteraceae/genética , Asteraceae/metabolismo , Regulação da Expressão Gênica de Plantas , Nutrientes/análise , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Necrose e Clorose das Plantas/estatística & dados numéricos , Proteínas de Plantas/genética
16.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163093

RESUMO

Lysine crotonylation is a newly discovered and reversible posttranslational modification involved in various biological processes, especially metabolism regulation. A total of 5159 lysine crotonylation sites in 2272 protein groups were identified. Twenty-seven motifs were found to be the preferred amino acid sequences for crotonylation sites. Functional annotation analyses revealed that most crotonylated proteins play important roles in metabolic processes and photosynthesis. Bioinformatics analysis suggested that lysine crotonylation preferentially targets a variety of important biological processes, including ribosome, glyoxylate and dicarboxylate metabolism, carbon fixation in photosynthetic organisms, proteasome and the TCA cycle, indicating lysine crotonylation is involved in the common mechanism of metabolic regulation. A protein interaction network analysis revealed that diverse interactions are modulated by protein crotonylation. These results suggest that lysine crotonylation is involved in a variety of biological processes. HSP70 is a crucial protein involved in protecting plant cells and tissues from thermal or abiotic stress responses, and HSP70 protein was found to be crotonylated in paper mulberry. This systematic analysis provides the first comprehensive analysis of lysine crotonylation in paper mulberry and provides important resources for further study on the regulatory mechanism and function of the lysine crotonylated proteome.


Assuntos
Broussonetia/metabolismo , Crotonatos/química , Lisina/química , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Broussonetia/genética , Broussonetia/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Lisina/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/química , Proteínas de Plantas/genética
17.
Int J Mol Sci ; 23(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35163540

RESUMO

Cytospora chrysosperma is the main causal agent of poplar canker disease in China, especially in some areas with poor site conditions. Pathogens secrete a large number of effectors to interfere the plant immunity and promote their infection and colonization. Nevertheless, the roles of effectors in C. chrysosperma remain poorly understood. In this study, we identified and functionally characterized a candidate effector CcSp84 from C. chrysosperma, which contained a nuclear localization signal motif at the C-terminal and was highly induced during infection stages. Transient expression of CcSp84 in Nicotiana benthamiana leaves could trigger cell death. Additionally, deletion of CcSp84 significantly reduced fungal virulence to the polar twigs, while no obvious defects were observed in fungal growth and sensitivity to H2O2. Confocal microscopy revealed that CcSp84 labeled with a green fluorescent protein (GFP) was mainly accumulated in the plant nucleus. Further analysis revealed that the plant nucleus localization of CcSp84 was necessary to trigger plant immune responses, including ROS accumulation, callose deposition, and induced expression of jasmonic acid and ethylene defense-related genes. Collectively, our results suggest that CcSp84 is a virulence-related effector, and plant nucleus localization is required for its functions.


Assuntos
Ascomicetos/patogenicidade , Núcleo Celular/metabolismo , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Ascomicetos/metabolismo , Vias Biossintéticas , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Microscopia Confocal , Sinais de Localização Nuclear , Imunidade Vegetal , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Domínios Proteicos , Espécies Reativas de Oxigênio , /metabolismo , Fatores de Virulência/genética
18.
PLoS One ; 17(2): e0263985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35171969

RESUMO

Rosette morphology across Arabidopsis accessions exhibits considerable variation. Here we report a high-throughput phenotyping approach based on automatic image analysis to quantify rosette shape and dissect the underlying genetic architecture. Shape measurements of the rosettes in a core set of Recombinant Inbred Lines from an advanced mapping population (Multiparent Advanced Generation Inter-Cross or MAGIC) derived from inter-crossing 19 natural accessions. Image acquisition and analysis was scaled to extract geometric descriptors from time stamped images of growing rosettes. Shape analyses revealed heritable morphological variation at early juvenile stages and QTL mapping resulted in over 116 chromosomal regions associated with trait variation within the population. Many QTL linked to variation in shape were located near genes related to hormonal signalling and signal transduction pathways while others are involved in shade avoidance and transition to flowering. Our results suggest rosette shape arises from modular integration of sub-organ morphologies and can be considered a functional trait subjected to selective pressures of subsequent morphological traits. On an applied aspect, QTLs found will be candidates for further research on plant architecture.


Assuntos
Arabidopsis/genética , Cromossomos de Plantas/genética , Variação Genética , Fenótipo , Folhas de Planta/genética , Locos de Características Quantitativas , Arabidopsis/crescimento & desenvolvimento , Mapeamento Cromossômico , Folhas de Planta/crescimento & desenvolvimento
19.
Gene ; 823: 146320, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35218893

RESUMO

Tomato zonate spotvirus (TZSV) often incurs significant losses in many food and ornamental crops in Yunnan province, China, and the surrounding areas. The pepper (Capsicum chinensePI152225)can develop hypersensitive resistance following infection with TZSV, through an as yet unknown mechanism. The transcriptome dataset showed a total of 45.81 GB of clean data were obtained from six libraries, and the average percentage of the reads mapped to the pepper genome was over 90.00 %. A total of 1403 differentially expressed genes (DEGs) were obtained after TZSV infection, including 825significantly up-regulated genes and 578 down-regulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that most up-regulated DEGs were involved in basal defenses. RT-qPCR, and virus induced gene silencing (VIGS) were used preliminarily to identifyBBC_22506 and BBC_18917, among total of 71 differentially expressed genes (DEGs), that play a key role in mediating the auxin-induced signaling pathway that might take part in hypersensitive response (HR) conferred resistance to viral infection in pepper (PI152225) byTZSV. This is the first study on the mechanism of auxin resistance, involved in defense responses of pepper against viral diseases, which lay the foundation for further study on the pathogenic mechanism of TZSV, as well as the mechanism of resistance to TZSV, in peppers.


Assuntos
Capsicum/crescimento & desenvolvimento , Resistência à Doença , Perfilação da Expressão Gênica/métodos , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Tospovirus/patogenicidade , Capsicum/genética , Capsicum/metabolismo , Capsicum/virologia , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/virologia , RNA-Seq , Transdução de Sinais
20.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35163763

RESUMO

The root tissues play important roles in water and nutrient acquisition, environmental adaptation, and plant development. In this study, a diversity panel of 388 wheat accessions was collected to investigate nine root system architecture (RSA) traits at the three-leaf stage under two growing environments: outdoor pot culture (OPC) and indoor pot culture (IPC). Phenotypic analysis revealed that root development was faster under OPC than that under IPC and a significant correlation was observed between the nine RSA traits. The 660K single-nucleotide polymorphism (SNP) chip was used for a genome-wide association study (GWAS). Significant SNPs with a threshold of -log10 (p-value) ≥ 4 were considered. Thus, 36 quantitative trait loci (QTLs), including 13 QTL clusters that were associated with more than one trait, were detected, and 31 QTLs were first identified. The QTL clusters on chromosomes 3D and 5B were associated with four and five RSA traits, respectively. Two candidate genes, TraesCS2A01G516200 and TraesCS7B01G036900, were found to be associated with more than one RSA trait using haplotype analysis, and preferentially expressed in the root tissues. These favourable alleles for RSA traits identified in this study may be useful to optimise the root system in wheat.


Assuntos
Mapeamento Cromossômico/métodos , Estudo de Associação Genômica Ampla/métodos , Locos de Características Quantitativas , Triticum/crescimento & desenvolvimento , Técnicas de Cultura , Desequilíbrio de Ligação , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...